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SUMMARY
.

DClL51a0b

A rapid method for designing turlmnachine blades of a given turning
and a destiable blade-thickness distribution for a compressible non-
viscous fluid flow along an arbitrary stream filament of revolution is
presented. The method utilizes the guiding effects of the blade shape
on the mean streamline shape snd of the blade thickness on the specific
mass flow along the mean streamline. After the flow on the mean stream-
line is determined, the extension of the solution from the mean stream-
line to the blade surfaces is accomplished by the use of a power series.
A number of blade profiles are obtainable for the total mass-flow
requirement, and one is chosen for the best velocity distribution on
the blade. The results obtained in the solution can be used for a
direct check on the accuracy of series approximation and, also, for
the more accurate determination of the velocity distribution along the
leading and trsiling edges of the blade.

The method is illustrated with the design of several turbine cas-
cades of highly csmiberedthick blades. The determination of the shape
of the blades and the compressible flow past the blades was caried out
by hand computation in 16 hours. One solution obtained by using thre~
terms in the power series compared very well.with an available &ect
solution and the blade circulation checks closely the specified turning
sngle.

Because the surface of revolution, on which the blades are located,
is completely arbitrary, the method can be applied to axial-flow,
radial-flow, and mixed-flow turbomachines. The vsriation in the normal
distance between the stresm surfaces of revolution can be taken into
account, thus incorporating into the design the principal effect of
three-dimensionalflow. The method is readily applied to the design of
channels on a plane and on a general surface of revolution.

.
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IN!I!ROBUCTION
.

The increasing use of compressors and turbines in aircraft power
plants during the past 10 yews has led to considerable research in the
direct and inverse problems of two-dimensional potential flow past an
itiinite cascade of airfoils. In the inverse problem, the design of
blades is often directed at control of the pressure or velocity distri-
bution on the blade. lkmt of the methods sre derived for axial-type
turbomachines, in which the flow is assumed to tske place on cylindrical
surfaces (methods for incompressible and compressible flow are discussed
in references 1 to 7 and 8 to 11, respectively). Methods for designing
blades in a radial.plane sre given in references 12 and 10.

In current axial- and radial-flow turbomachines, the flow surfaces
sre usually of a more general shape than either cylindrical or radial.
Furthermore, the normal distance between adjacent flow surfaces varies
along the flow path. A method was therefore developed at the Lewis
laboratory for the design of blades for compressible flow ale@ an
arbitrary stream filsment of revolution. Instead of the velocity
distribution on the blade being the required result, the blade design
is aimed at a desfiable blade-thickness distribution required with
respect to blade stren@h and Mach nuniberin general and also the cool-
ant passage requirement in the case of cooled turbine blades. The com-
putation involved in this method is relatively simple and short, and
the usual assumption of a linesr pressure-wlume relation for compres-
sible flow is n& required.

I?orclarity and shplicity
compressibleflow on a plane or
illustratedby a few exsmples.

—

the method will first be given for
a cylindrical surface and will be
The-method

genersl case of compressible flow along an
revolution.

SYMBOLS

will thenbe given for the
arbitrary stream filament of

The following symbols sre used in this report:

B differentiationcoefficient

H ~?totsl enthalpy, h + z

w’~ relative total enthalpy, h + z

h static enthalpy
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G.d,

blade length projetted on turbanachine -s

orthogonal coordinates on mean surface of revolution

mass flow

pitch or spacing

static pressure of gas

radial distance from sxis of turbomachine

streamline

blade tbiclmess in circumferential

absolute velocity of gas

velocity of gas relative to blade

distance in direction of pitch for
for flow on cylindrical surface

direction

plane flow and equal to rp

distance along axis of turbomactine

Wql
flow angle on stream surface, ~-l ~ or tan-l E

density of gas

mgle between tangent
Wr

to meridional curve and axis, tin-l ~
z

Jormal thickness of stresm filament of revolution

ratio of specific heats

stresm function

angular velocity of blade

Superscript:

* dimensionless value
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Subscripts:
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$
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e

i

Z,cp

m

P

s

T

Y

z

exit

Inlet

meridional and circumferential

mean streamline

pressure surface of blade

suction surface of blade

total or stagnation state

y-component

z-component

components

DESIGI%U?GBLADES

OR ON

Genersl

FOR COME’R13SSlBIlEFLOW IN PI&NE

CYKUlllKK!AIlmAcE

Description of Method

In a recent investigation of compressible flow through a typical
cascade of turbine blades (reference 13), the folJowing results were
obtained:

<1) The shape of the mean streamline follows approximately that of
the mesn channel line of the cascade and has a lower curvature.

(2) The variation of the ratio of the specific mass flow on the
mean streamline to its inlet value follows the trend in the variation
of the ratio of pitch to channel width (inside the channel the ratio of
the specific mass flow is about 4 percent ~eater than the ratio of
pitch to channel width).

(3) The variation in fluid properties across’the channel can be
represerrtedby a second-degreefunction for engineering accuracy.

These results were used herein to develop a
designing cascade blades for either compressible

‘I!bismethod of blade design starts with the
pressible flow on the mean streamline. With the

rapid method for
or incompressible flow.

calculation of the com-
flow angle upstream

—
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and downstream of the blade determined by the velocity diagram and the
pitch and the @al length of the blade given, a particular mean stream-
line shape may be sketched by the designer. The designer may use the
shape of the mean streamline itself as a parsmeter of the cascade or
msy specify the mean streamline shape according to figure 17 or refer-
ence 13 (or even better according to any available relation of a shi-
lsr blading) to lead to a certain blade camber line. (IX only a number
of points of this streamline sre specified, it is important that the
values given sre numerically smooth). In addition to the mean streamline
shape the designer further specifies at a finite number of points along
the mean streamMne (such as Z1 . . . z18 in fig. 1), the ratio of

specific mass flow on the mesm streamline to inlet value. The values
of the specific mass flow on the mesn streamline are determined by the
blade-thickness distributionwhich is desirable from the consideration
of blade stress and Mach number in general, and the consideration of
the additional.requirement of coolant passage in the case of cooled
turbine blades, and by a relation between blade-tld.cknessdistribution
and specific mass flow on the mean streamline, such as shown in fig-
ure 19 of reference 13.

With these specified values, the velocity components and the density
are very easily determined at the specified points on the mean stream-
line. The variation of velocity components and density in the pitch
direction sre then obtained by using power series in that direction.
The derivatives in the series are determined from the fluid state on
the mean streamline by the use of equations of continuity and motion
and the density-velocityrelation for isentropic flow. A number of
blade profiles and their velocity distributions sre obtained by inter-
preting the starting mean streamline as dividing the inlet mass flow
into two slightly ~ferent smounts in the chsnuel. The velocity dis-
tributions on the blades sre compared and the best one is chosen. If
the blade shape, the’thickness distribution, or the velocity distri-
bution around the blade obtsined requires some modification, the
values specified for the mean streamline should be modified and the
process repeated. Because of the relatively short computation involved “
[in the illustrative examples of turbine blades, only 16 hours were
required for the compressible solution by using the fixst three terms
in the series and 6 to 10 stations imide the channel), modifications
of the solution for more desirable blade thickness or velocity distri-
bution is practical. Families of blade elements can be built up very
qtickl..ythis way for any particular application.

Basic Relations

The steady two-dimensional isentropic flow of a nonviscous fluid
in a plane or on a cylindrical surface is governed by the following
equations of continuity and irrotationalmotion, and the isentropic
pressure-densityrelation:

.—...—.—— .— .—-. — —.
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awz aw

F-&=o

(1) -

(2)

P=KPT (3)

In these equations, the z coordinate is chosen along the machine axis
and the y coordinate is chosen slong the pitch direction (y = r~ in
the case of cylindrical flow with r equal to a constant).

Consider first the gas flow along a streamline somewhere in the
midpart of the channel formed by two neighboring blades, such as ab
in figure 1. The coor~tes of the streamline and their &ferentisls
are related, respectively, by the following two equations:

S(z,y) = o (4)

asEdz+#iy=o (5)
4

When the variation of the fluid state along the streamline is considered,

The

But

qusntity q on the stream13.neis a function of z only,

q = q ~,y(zjj

totsl derivative of q with respect to z is

Hence equation (7) may be written as

When equation (9) is used, the continuity and
csn be written as

.
that is,

(6)

(7),

P

irrotationality

(8)

(9)

relations

.

—.
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(lo)

and

dWy ~Wz awy
—-

~ (lI_)_tm$~=o
dz

The variation of density throughoti the flow region can be most
conveniently expressed in terms of its inlet value through the use of
equation (3) as fo120ws:

1

‘T,i P ‘T,i ~ W2
q’

P*=~=——
‘~ ()

-—
Pi Pi (12)

‘T,i
2%

A tabulated general relation of p/pT,i in equal intervals of W2/~

can first be c~culated, from which either a table for p/p< in equal
intervsls of W< or a graph
vidual case and used for the

. Along the chosen (mean)
pwz is given at a nuder of

can be.easily constructed fO>”~a& ~-
evsluation of density from the velocity.

streamline, where the slope is known and
stations, the density at these stations can

be obtained as follows: Rewrite equation (12) as

where

.

P*=:’
i
rWz, i2

1 -— (p*Wz* sec 9)2
2~p*2

or

(12a)

.- — —.—— —.— . —
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Either equation

used to c~~u~~

Vals of

then plotted as

I’?ACATN 2455
.

(12a) is used toprepsze stable of p* for equal inter-
sec ~) by an iterative process, or equation (Mb) is .

p*wz* sec ~ for a n~er of v~ues P*) which me
a @?aph. After densities have been obtained from either

a table or graph, the velocity components on the chosen (mean) stream-
line are readily computed. The fluid state is then extended out in the
pitch direction by the equations given in the next section (comparewith
references 14 and 15).

Variation of Fluid State inl?itch Direction

Equations (8), (10), (n), and {12) directly give the first-order
psrtisl derivatives of Wz, Wy, and p with respect to y in terms

of the known quantities on the chosen (mean) streaniMne as follows:

[!%=%+t-% dz 1

1 d_(Pwz)
C062%

awy

[

dw

1

~ d(pwz)

F= .tsnf+-~ & cos2P

ap ( awz aw

~=-

(Y--U(;-$) )wz~+wya+

The second-orderpartisl derivatives of Wz, WY) and p with

respect to y can be obtsined as follows: Differentiating the con-
tinuity equation (1) with respect to y results in

Equation (16) can be written through the use of relation (9) as

a2(Pwy) a2(pwz)
-tan J3

d a(pwz)

a? @
‘Znj==o

(13)

(14) .

(15) “

(16)

(17)

which is expanded to obtain

a2wy ( a2wzap awY — ) d a(pwz)aptiz tmp+=T=O

p a$ ‘2 *F- ‘a+’ ‘2ZF
(18)

— — —. .— —-——.
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From equation (10)

(19)

Differentiating the irrotationalityequation (2) with respect to y and
using equation (9) yield

(20)

Substituting equations (19) and (20) into equation (18) results in

a2wy 2 d(PWz) ap

[

d awy a2w

)

d a(Pwz)
y tanp+~ -=()

‘-– dz =p ayz p -pTzay
-tanj3— &2

Transposing snd combining terms give

., .
(21)

After this equation is evaluated, the second partial derivative of Wz
with respect to y is obtained by using equation (20):

a%= ~ awy a%y

—’z&-
-tanp— (22)

ay2 . ay2

A typical computation for these derivatives is presented in tables I
and II.

The second-orderpartial derivative of p with respect to y is
obtained again from equation (12):

()I a2p_2-T ap 2

[

a$iy

pay2 P2 % - ()()j
(.-l)t%-$) ‘z “w’ ‘+ ‘2+ ‘2

(23)

. in a
Third and higher
similar msmner.

order y-derivatives, if reqtied, can be obtained
The complete variation of any fluid property q

——
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across the channel can then be expressed by a Taylorts series in (y-ym)

from the various derivatives at the given streamline, such as the mean
.

streamline

()aq (3=Ym)2 a2q
q(Y) = ()~+(Y-Ym) ym+ 2: p +

m

(Y-Ym)3a3q() (Y-Ym)4 a4q
3!

()%.+ 4: pm
+.. . (24)

Determination of Blade Profile

The blade profile canbe obtainedby a consideration of mass flow.
At the chosen stations, mass flow across a constant z line from ym

to y is computed as a function of y according to the following equa-
tion:

J
Y

M= P~~zw (25)

Ym

The variations of mass flow M and the magnitude of resultant velocity
W at each station sre plotted against y (fig. 2). Because the con-
dition on the suction surface is more critical than that on the pressure
surface, the blade shape on the suction side is determined first. Rrom
the plot of mass flow against y, a nuniberof ys’s me chosen for a

nmiber of mass fluws in the neighborhood of one-half the inlet mass
flow, thus obtaining a number of suction surfaces.” The corresponding
velocities on the suction surfaces sre read from the velocity plots
(fig. 2). The one with the best velocity distribution is then chosen.
After the suction surface is selected, the pressure surface and its
velocity sre determined in a similar manner by the total mass-flow
requirement. If the shape or thickness of the blade or the velocity
distribution on the blade obtained is not qtite the one desired, the
shape of and the flow on the mean streamline can be modified accordingly
and the process repeated. Because each case takes a relatively small
amount of computation, this modification is practical. Systematic
building up of families of blades for various applications is also not
difficult.

The accuracy of the blade coordinates obtained depends mainly on
the accuracy of series representation and the accuracy to which the
psztisl derivations are evaluated. For high-solidity blades, such as
those investigated in reference 13, the first three terms in the series
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will give sufficient accuracy. For low-solidity blades, more terms may
be required. It may be noted that accurate representation of the flow
variation by the series is difficult to achieve in the neighborhood very
close to the leading and trailing edges; but from a practical point of
view it is satisfactory to fair in the nose and the tail according to
some standard shape titer the blade coordinates sre obtained up to a
short distance away from these regions.

The application of this design method willbe greatly aided by the
availability of detailed flow variations in typical bladings such as
those given in references 13 and 16. If a typical solution of the type
of blading to be designed is not available, either a direct problem may
be solved first, or even better, the accuracy of the inverse solution
can be ascertained in the manner described in the following section.

Method of Checking Solution

The inverse solution obtained by tbls method canbe very conven-
iently checked and improved, if necesssry, by the relaxation method
utilizing the fluid state obtained in the solution. Inasmuch SE the
velocities are available in the solution, the equation for irrotational
absolute flow (equation (A9) of reference 13) is now written as

al +

az2

The finite-differenceform

‘2ii

G
2

2ik
B.V+ B*
nJ= k=onk

(a% ap
—+ wy-&-
h2 )W4$=0 (26)

of equation (26) is then

[“F+(Wy)i
1

_o;B; Pj - (Wz)i&B; Pk =0

(27)

where the same notation used in reference 13 is employed. A grid
system is obtained by retaining the same z-stations used in the inverse
solution and dividing the pitch distance into an appropriate number of
dll.visions.The values of ~, W, and p are most conveniently obtained
by reading off the plots of integrated mass flow M, W, and p at
each of the z-stations. The differentiation coefficients B’s for
equally spaced grid points as given in reference 17 can be applied
throughout the domain for the present purpose by using the function
values which are inside the blade but at equal spacing from the points
in the channel (the ftist and last rows in tables III and IV). If the
residuals obtained according to equation (27) require negligible change
in *, the solution is entirely satisfactory. If the residuals are
large enough to necessitate one cycle of relaxation, the net effect

. — ———.-.-—- .— .——e ___ . . ——— —_ ——— —.—
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may be a slight change in the specified mean streamline flow and in the
velocity distribtiion on the resultant blade. If the residuals sre so
lsrge as to wsrrant a few cycles of relaxation, the flow variation for
this type of blading is established,which makes the design of other
similsr bladings very simple. In general, for problems in which some
knowledge of the flow is available, no relaxation should be necesssry
except, perhaps, near the nose snd tail when accurate detailed velocity
distribution in these regions is desired.

toc-u
Special Case of IncompressibleFlow

N
N

.
When the density is constant, the channel width ratio P/(P-t) has

a relation to Wz,rn similsx to the relation it has to (pWz)m fi the
compressible case (reference13). A nwiber of values of Wz are t&e-
fore prescribed at a numiberof chosen stations along the mean streamline
to lead to a desirable thickness distribution of the blade. The solu-
tion of the incompressibleproblem continues in generally the ssme
manner as it did for the compressible case with considerable sin@ifi-
cation in the series terms and the integration process. In the incom-
pressible case, of course, equations (12), (15), and (23) relating p
and the velocities are unnecessary.

.

The first- and second-order derivatives expressedby equations (13),
(14), (21), and (22) for the compressible case sre simplified-to:

.

awy

(

dWy dWz

~=
tanp~-~

)
Cos2P (28)

(29)

(30)

(31)

for the incompressible case. The equation for obtaining mass flow

J

Y
becomes M= p w= w.

Ym

,

— —.—— —
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Illustrative Exsmples
.

N
m
NJ
m

.
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The procedure outlined in the preceding sections has been applied
to the design of several highly cambered thick turbine blades for either
compressible or incompressible flow.

First and second examples. - In the first example, the shape of the
mean streamline and the variation of axial velocity obtained in the
incompressible solution of the blade given in reference 13 sre tsken
as the specified values in order to determine whether the original
blade will be reproduced. The shape of the mean streamline is shown in
figure 1 and the thickness distribution of the blade is shown in fig-
uxe 3. As a further check of the method, the z-stations chosen in this
calculation correspond to every other z-station used in reference 13J
so that the velocities obtained &Long these stations can also be com-
pared with the solutions obtained in reference 13. The given quantities
were inlet sn.gle pi) 41° 18’; exit angle ~e, -52° 57’; axial chord

L, 1.5 inches; and pitch P, 1.017 inches.

The same data are used in the second example in which a compres-
sible solution for an inlet Mach number of 0.42 is obtained. The axial-
velocity variation on the mean streamline used in the first example is
now taken as the specific-mass-flowvariation on the mean streamline.
This example is presented mainly to illustrate the difference in incom-
pressible and compressible solutions for the same mean streamline sha~
and the same ratio of specific mass flow.

The complete comptiation for the flow on the mean streamline and
the determination of the first- and second-order derivatives of Wz,

WY) and p in the pitch direction at the mean streamline for these

two cases is given in tables I and II. Only three terms in the series
sre used because the direct solutions given in reference 13 indicate
that they will be sufficient for engineering accuracy. The central-
point fourth-degree differentiationformula isused at the regulsr
stations Z3 to z16. Because the first and last stations inside the

channel employed in reference 13 sre not close enough to the leading
and trailing edges, respectively, two extra points sre computed at
stations 6.75 and 12.25 by the use of the unequal interval differen-
tiation formula given in reference 18. These two points are so desig-
nated because they are located at a distance of a quarter of the regular
spacing awsy from stations 7 and 12, respectively. This combination is “
unnecessary for other cases.

The velocities and the densities used in the calculation sre non-
Mmensionalized as follows:

. -. -——— —— — — — -—.-— .—-..
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T/$
w*=-
Y Wz,~

The mass flow M*, being ditided by piWz,i> h- the dimension of
length:

M*= M
Piwz,i

For the compressible case, the ratio of ~ to WZ,~2 is equal ,

to 25.78, which is the value used in the construction of the two density
graphs involved in the calculation,the reduced versions of which are
shown in figures 4 and 5.

.

The values in columns 2, 5, 8, 9, 3.2,and 13 of table I and 7, 8,
13, 14, 22, and 23 of table II sre used.to compute the variation of Wz
and WY in the pitch direction by the power series. The calculation

of density fold.owsdirectly as does the integration across the channel
for mass flow, the mass flow being determined numerically. Because the
specific mass flow pWz was made dimensionlesswith its imlet value,

the numericel value for the -S flow is equal to the pitch, the height
being considered unity. This indicates that the integration for mass
flow along the pitch direction starting at the mean streamline was con-
sidered to be complete in either the plus or mipus direction when a
value equal to one-half the pitch distance or one-hellfthe total mass
flow was reached. Thus the channel flow and the blade coordinates
were obtab.ed. This calculation at one station, 10, is shown in
tables IJX and IV for the two oases, respectively.

The blade profile obtained by interpolating ys and yp for

one-half of the inlet mass-flow value is shown in figure 6. ‘Because of
the same mean streamline sha~ and the ssme variation of specific mass
flow on the mean streamline prescribed in the incompressible and com-
pressible cases, the blades obtained for these two cases look quite
shdlar except that the compressible one is scmewhat thicker snd the
suction surface of the compressible solution is situated fsrther from
the given mean streamline; these results sre consistent with the direct
solutions given in reference 13. The velocities obtained in the two
cases (fig. 7), however, sre quite different. Those in the compressible .

—— ——. .-
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solution sre, in general, higher than those
principally because of the high velocity on
i~from the use of the same (pllz)m anda

mean streamline in the compressible case.

15

in the incompressible case,
the mean streamline result-
decreasing p along the

The blade coordinates obtained in the incompressible solution are
compared with those of the original blade in figure 8. The velocities
at the six regular stations in the channel are compared (figs. 9 to 11)

N
m with the values obtained in the relaxation solution of the original
N
w blade reported in reference 13. These foux figures show that, in

genersl, the present solution is satisfactory. The relatively large
differences nesr the leading and trailing edges are partly due to the
inaccuracy in the second-degree@..ynomial approximation in the present
calculation and partly due to the inaccuracy of the numerical solution
obtained in reference 13 caused by the relatively coarse ~id used in
these regions.

As a check of the consistency of the solution, an integration of
the velocity along the blade profile obtained in the ssme example was
made and compared with the circulation value comptied from the inlet
and exit tangential velocities and the pitch. The two are in agreement
within 1 percent.

. Third and fourth exsmples. - In the previous two examples, the mean
streamlines and specific-mass-flowdistributions prescribed were not
entirely arbitrary, having been obtained from the-results of a direct
problem for incompressibleflow. The,possibility of obtdning an
unrealistic blade shape was, for this reason, lsrgely eliminated. Con-
sequently, in order to give the method a still more rigorous test, the
thickness distribution (fig. 12) and mean blade line ~fig. 1.3)for the
hub section of an experimental cooled turbine blade were arbitrarily
chosen from which a mean streamline snd specific mass flow were estima-
ted by means discussed in the section “General Description of Method.”

In addition to the mean blade line and thickness distribution, the
following data were used: inlet Mach number, 0.42; inlet angle, 36.2°j
exit angle, 42.7°; axial chord, 1.8 inches; and pitch, 1.176 inches.
The mean blade line was faired into the inlet and exit directions
(fig. 14) with modification to obtain a mean streamline according to
the information obtained for a typical turbine blade in reference 13
(see fig. 8). The thickness distributicmwas,used to obtain the
specific-mass-flowdistribution along the mean streamline (dashed curve
in fig. 15) according to results obtained in reference 13. After the
flow on the mean streamline was calculated, it was then extended out
from the mean streamline across”the channel by means of power series as
before.

. Both compressible and incompressible solutions were completed, the
incompressible case being considered first because of its relative

.

-. —-—— ———- —.— — . —
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simplicity. The results of the incompressible case served as a guide to
obtsining better prescribed values for the compressible case. The blade .

obtained in the incompressible solution has a slightly higher thickness
distribution than was wanted and, because results obtained in the first
two examples indicate that the compressibleblade will be thicker than
the incaqmessible for the same specific-mass-flowdistribution, this
distributions deyressedby a linesr proportioning (fig. 15) in order
to obtsin better stsrting values for the compressible case and.conse-
quently a thinner blade (fig. 14). The same mean streamline nunericall.y
smoothed to give small fourth differenceswas used.in both cases. M

E
AE a check of the accuracy of the last solution, a grid having the

N

same spacing in the z-directionused in the inverse solution (0.18) and
a grid spacing of 0.147 in the y-direction is chosen, and the residuals
at the grid points are computed according to equation (27) using the
central point second-degree differentiationformula. As shown in
table V, the residuals me rather small when they sre compared with the
magnitude of the coefficient at the points (-154.3). As an indication
of the percentage error in the velocity, these residuals are first
divid.edby -154.3, resulting in an approximate change in the ~ value
at each petit. Then the probable error in W/by or pWz is calcula-
ted. The result is shown in table VI, which indicates that the solution

.

obtained is sufficiently accurate for ordinary purposes.
.

DESIGNING BIAllESFOR COMPRESSIBLEFLOWALOI’?GARBI’I!RARY
,

STREAM InmMlmr OF REVOLUTION

Basic Relations

The blade design method presented in the section “Iksigning Blades
for CompressibleFlow in Plane or on Cylindrical Surface” can be very
easily extended to the more general case of flow along an arbitrary
stresm filament of revolution having a varying normsl thickness
(fig. 16). When only an average value in the stream filament of revolu-
tion, SE represented by the flow on the mean stresm surface of revolu-
tion described by a set of orthogonal coordinates 2
is considered, the equation of continuity for steady
the equation of irrotationsl absolute flow sre given
follows:

and ~ (fig. 16),
relative flow and
in reference 13 as

(1’)

aw

+’
~awz

z
+2LDsincr=o

— —.
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where primes in equation numbers
the cylindrical case.

When the fluid flow along a

17

indicate equations similsr to those of

streamline S(2,~) = O on the mesn
surface of revolution is considered, it is convenient to write ~
quantity q on S as a function of 2 only. Then the total deriva-
tive of q with respect to Z, following the streamline, is

when

When the preceding relation is used, the continuity snd
conditions can be written as

d(TpWzr) b(TPWZ) b(TpW )

dZ -tan PT+’+=o

(9’)

irrotationality

(10’) .

(n’ )

The variation of density throughout the flow region) in general,
is obtained from the velocity by using the following equation:

(12’)

In order to obtain the density on the st=ting (mean) streamline, equa-
tion (12’) is written in the following form (compare with equation (7a)
of reference 13):

2

where

(12a’)

—.-—— .-——— — -.—
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2_-

Z=P*2(1+F2)’-1
Y+l

Once the general relation between ~ and @ is available, the evalua-
tion of p* for certain given vslues of p*W2* sec ~ along the chosen

(mean) streamline is made simple if auxiliary tables or graphs giving

_— -—

t+t2r2) ‘1 ad rg)r+~2) ‘: ‘fwtiomof r

are first obtained.

The determination of the flow along the stsrting (mean) streamline
(fig. 17) proceeds very much the ssme as in the case of plsne flow or
flow on a cylindrical surface. The shape of the streamline gives
aec ~. The variation of p%Z* is obtained from the blade-thickness

variation along the mean surface of revolution as foXlows: If the
value of PW. on the mean streamline represents its average value in

the circumfe~entialtiection

But

(33)

hence

(32)T(PW2)~ (p-t) = (TPW2p)i

‘i ‘i—=—
Pr

T(@J2)mr P

m = p-t
(34)

Although there is always some deviation from this simple relation.

.

especi~ sround the ieting and trsiling edges, a relation betw;en the
two terms in equation (34) similar to that between (p*Wz*)m and

.-
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P/(P-t)* in t$e previous cylindrical case can be expected. Then, from

T*(P~~z )m r ~ (P~z”)m is calculated and cotiined with sec ~ from

which pm* is obtained by equation (12a’). After ~* is ~t~ed,

wZ,m* ad ‘hen ‘~,m* sre easily calculated.

Variation of Fluid State in Pitch Direction

The first-order partial derivatives of WZ, W@ and p with

respect to ~ are readily obtained from equatio~ (10’), (n’ ), and
(12’) as:

.

In a msnner similar to that of the case of plane or cylindrical
flow-the second-orderpartial derivatives of W and parez7~Y_\
obtained as follows:

(21’)

(22’)

(23’)

—.——.———.—. — ———— ——— _ .— _.— ——
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After the
iS determined,
is computed by

from which the
H checking is

NACA TN 2455
.

variation of fluid state in the circumf=ential direction
the mms flow across a constant Z line from Pm to ~

(25’)

blade coordinates are determined as in the previous case.
desired, the following equations sre to be used:

where the ssme notation used in reference 13 is

z‘%&#+
~.(ri)2

1Zt.D(psin U)i = O

employed.

(26’)

(27’)

SUMMARY (IFRESULTS

A rapid method for designing turbmachine blades of a given turning
and a desirable blade-thickness distribution for a compressible non-
viscous fluid flow along an arbitrary stream filsment of revolution is
presented. The method utilizes the guiding effects of the blade shape
on the mean streamline shape snd of the blade thi=ss on the specific
mss flow along the mean streamline. After the flow on the mean Btresm-
line is determined, the extension of the solution from the mean stream-
line to the blade sm’faces is accomplishedby the use of a power series.
A nmiber of blade profiles sre obtainable for the total mass-fluw
requirement, and one is chosen for the best velocity distribution on the
blade. The results obtained in the solution can be used for a direct
check on the accuracy of series approximation and, slso, for the more
accurate determination of the velocity distribution along the leading
and trailing edges of the blade.

toc-u
E

— –—
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The method is illustratedwith the design of several cascades of
airfoils. In each case either some indication of the accuracy of the
solution is given or the relation between the incompressible and com-
pressible problems sre shown. In the first case, the results obtained
in an incompressibledirect solution were used as prescribed values for
the inverse problem to show that the original blade canbe relatively
easily reproduced with adequate accuracy. The variation of the velocity
and its components across the channel was shown to compare favorably
with those obtained in the tiect solution and an integration sround
the blade for the cticulation checked with that obtained from inlet and
exit values within 1 percent. In the second problem, the ssme mean
streamline and specific-mass-flowdistribution along it were wed; but
this time the density was allowed to vary as in compressible flow and a
comparison was made between the blades obtained in the first two cases.
In the third and last problem, an arbitrary mean streamline and specific-
mass-flow distribution were chosen, the blade obtained, and.the solution
checked by calculation of the residuals as in a direct relaxation solu-
tion. Because the residuals were small the solution was considered to
be reasonably accurate. A computation designed to give some indication
of the accuracy of the velocities by dividing the derivative of the
error in the stream function ~ by the derivative of $ itself showed
them to be accurate generaldy within 1 percent except nesr the blade
boundaries where an end-point formula waE necessarily used to obtain
derivatives.

Because the surface of revolution, on which the blades are located,
is completely srbitrsry, the method canbe applied to -al-flow, radial-
flowl and mixed-flow turbomachines. The vsriation in the normal
distance between the stream surfaces of revolution canbe taken into
account, thus incorporating into the design the principal effect of
three-dhensional flow. The method is readily applied to the design of
channels on a plsne and on a general surface of revolution.

Lewis Flight Propulsion Laboratory,
National Adtisory Committee for Aeronautics,

Cleveland, Ohio, May 31, 1951.

.
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1.029
.882
.73s
.58a
.441.
.294
.147

0

TABIEV-RESIIFU AISORTAINEOIN COMP.RE2S181.E601RI?IOIJOF TEIRD EX.MFIE

0.I.8 I 0.36

0.2093
-1.2212 - .1610
-1.0M8 - .2084
- .3648 .2068

.1086 .2642
- .3708 - .3s69
- .5373

0.54 I 0.72 0.90 1.08 I 1.26 1.44 1.62 1.80
I I I 1 I 1 I

o.7716 -0.0361 -0.2726 0.0389
.3052 .3007 .l_913 .SI.270.0752 -0.4316 -0.0797

J
.164L

- .0033
.02U
.6B9 l--!

.0091 .1671
- .1896 - .IJ97 -
- .0233 .2706
- .lol?i- .1494 1

.0279

.I168

.0386

.0228

- .32C%
- .2642

.5123
- .0189
- .0203

.2230 - .2538 -0.2408
- .1612 - .1942 .5271

.I.244 .1039 .4335
- .9797 .0698 .2336

.2631 - .2363 - .3507
- .4918 .0368

.3491

TABIiEvI—EsI!IMArEDPEFmmmE ERROR IN ~/by 0)? PW=

Y= 0.= 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1.80

1.176 -0.01005-0.01217,Q.01223 0.01-342 0.00119
1.029 -0.00022 - .Q3771- .OI.IJ5 .00081 .00779 - .0alZ8 o.01M8 0.02231 -0.00597
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.Z94 - .Cml.s .00437 .04036- .01052- .00394
.147 - .00432 .01379
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Figure 4. - Variation of P* with (P*W sec P)2 fi accor~ce

with equation (12b).
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